National Food Safety Standard of P. R. China

National Food Safety Standard

Determination of Added Citrate Content in Cheese and Processed Cheese Products

Preface

This standard will replace GB/T 22031-2008<<Determination of added citrate content in cheese and processed cheese products: Enzyme - colorimetric method>>.

Appendix A and B are normative standards.

Previous edition which is replaced by this standard:

GB/T 22031-2008

Determination of Added Citrate Content in Cheese and Processed Cheese Products

1 Scope

This method specifies determination method for the added citrate content (expressed as citric acid) in cheese and processed cheese products.
This method is applicable for the determination of added citrate content in cheese and processed cheese products.

2 Cited Normative Documents

The reference documents cited in this standard are indispensable to this standard. For the dated references, only the dated one are applicable and for undated references, the latest edition (including revised versions) is applicable for this standard.

3 Principle

When determining the total citrate content in the sample, the added citrate content is obtained by deducting the citrate content (converted by 0.04 times of the lactose amount) carried into the sample by raw material, while citrate is expressed as citric acid.

4 Analysis Procedure

The determination of total citrate and calculation of its content refer to Appendix A.
The determination of lactose and calculation of its content refer to Appendix B.

5 Result Calculation

The added citrate content in sample is expressed and calculated as formula (1):

$$
\begin{equation*}
w_{\mathrm{s}}=w_{\mathrm{c}}-r w_{\mathrm{i}} \tag{1}
\end{equation*}
$$

Where:
$\omega_{a}-\quad$ Added citrate expressed in citric acid in mass(\%;)
$\omega_{c^{-}}$Total citric acid in the sample, expressed in mass (\%)
ω_{i}-- Lactose content in the sample, expressed in mass (\%);
r-Ratio between citric acid content and lactose content in the raw material--whey powder or milk powder (r=0.04);
Two significant digits are reserved for the calculation results obtained from two independent test under the same condition.
6. Precision

The difference between the absolute values of the two independent determination results obtained under the repeatability condition must not exceed 10% of the average arithmetic value.

Appendix A

(Normative Appendix)

Determination of Added Citrate Content in Cheese and Processed Cheese Products- Enzyme Method

A. 1 Scope

This appendix is applicable for the determination of added citrate content in cheese and processed cheese products with enzyme method.

A. 2 Principle

CL converts citrate into oxaloacetate and acetate, while L-malic acid and L-lactic acid are respectively converted through catalyzed decarboxylation of oxaloacetate, which is conducted through MDH and LDH in the presence of NADH and pyruvate (decarboxylation product). During the reaction, NADH is oxidized into NAD ${ }^{+}$. Determine the absorbance difference of NADH and calculate the citrate content in sample at 340 nm .

A. 3 Reagent

Unless otherwise noted, all the reagents are analytically pure. The test water should comply with the provisions in GB/T 6682.
A.3.1 Trichloroacetic acid solution (200 g/L): Weigh 20 g trichloroacetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$, dissolve in the water, blend and dilute to volume of 100 mL .
A.3.2 NaOH solution ($200 \mathrm{~g} / \mathrm{L}$): Weigh 20 g NaOH , dissolve in the water, transfer it into a 100 mL volumetric flask, dilute to volume and blend.
A.3.3 NaOH solution ($40 \mathrm{~g} / \mathrm{L}$): Weigh 4 g NaOH , dissolve in the water, transfer it into a 100 mL volumetric flask, dilute to volume and blend.
A. 3.4 NaOH solution ($4 \mathrm{~g} / \mathrm{L}$): Weigh 0.4 g NaOH , dissolve in the water, transfer it into a 100 mL volumetric flask, dilute to volume and blend.
A.3.5 ZnCl_{2} solution (?g/L): Weigh $0.8 \mathrm{ZnCl}_{2}$, dissolve in the water, transfer into a 1000 mL volumetric flask, dilute to volume and blend.
A.3.6 Buffer solution (pH 7.8): Weigh $7.18 \mathrm{~g} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CONHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$, dissolve in 70 mL water, transfer it into a 100 mL volumetric flask, adjust pH to 7.8 with NaOH solution (A.3.2), add 10 ml ZnCl solution (A 3.5), dilute to volume and blend. Buffer solution can be stored in refrigerator ($0 \sim 4^{\circ} \mathrm{C}$) for 4 weeks.
A.3.7 NaHCO_{3} solution ($4.0 \mathrm{~g} / \mathrm{L}$): Weigh $4.0 \mathrm{~g} \mathrm{NaHCO}_{3}$, dissolve in water, transfer into a 1000 mL volumetric flask, dilute to volume and blend.
A.3.8 NADH solution: Weigh $50 \mathrm{mg} \mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{14} \mathrm{P}_{2} \mathrm{Na}_{2}$ and $100 \mathrm{mg} \mathrm{NaHCO}_{3}$, dissolve in 10 mL water.
A.3.9 $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution $(422 \mathrm{~g} / \mathrm{L})$: Weigh $42.2 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, dissolve in water, transfer into a 100 mL volumetric flask, dilute to volume and blend completely.
A.3.10 MDH and LDH suspension liquid: Respectively dissolve MDH (porcine heart, EC 1.1.1.37) and LDH (rabbit meat, EC 1.1.1.27) in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution (A.3.9) to make the activity of MDH $\geqslant 600 \mathrm{IU} / \mathrm{mL}$
and that of LDH $\geqslant 1400 \mathrm{IU} / \mathrm{mL}$. After having been slowly stirred into suspension liquid, this solution can be stored in refrigerator $\left(0 \sim 4^{\circ} \mathrm{C}\right)$ for one year.
A.3.11 CL solution: Dissolve CL in water at $0^{\circ} \mathrm{C}$ (enterobacter aerogenes, EC 4.1.3.6) to make activity of $\mathrm{MDH} \geqslant 40 \mathrm{IU} / \mathrm{mL}$. After having been slowly stirred into suspension liquid, this solution can be stored for one week in refrigerator $\left(0 \sim 4^{\circ} \mathrm{C}\right)$ and four weeks in refrigerator at $-20^{\circ} \mathrm{C}$.
A.3.12 Standard citric acid solution ($160 \mu \mathrm{~g} / \mathrm{mL}$): Weigh $175 \mathrm{mg} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \cdot \mathrm{H}_{2} \mathrm{O}$, dissolve in water, transfer into a 1000 mL volumetric flask, dilute to volume and blend completely

A. 4 Instrument

Common used laboratory instruments and other items as follows.
A.4.1 Analytical balance: sensitive quantity $=0.1 \mathrm{mg}$
A.4.2 pH meter: accurate to ± 0.1.

A.4.3 Grinder

A.4.4 Graduated colorimetric tube with stopper: 10 mL , division value is 0.1 mL .
A.4.5 Medium-speed filter paper
A.4.6 UV-Vis spectrophotometer, $340 \mathrm{~nm}, 1 \mathrm{~cm}$ colorimetric dish
A.4.7 Water bath pot.

A. 5 Sample preparation

A.5.1 Cheese

Remove the outer layer or moldy surface to make the sample representative. Use grinder (A.4.3) to crush the sample and blend.

A.5.2 Processed cheese product

Select representative sample, use grinder (A.4.3) to crush the sample and blend.

A. 6 Analysis procedure

A.6.1 Test solution preparation

Weigh 1 g sample (A.5), accurate to 0.1 mg , dissolve it in warm water ($40 \sim 50^{\circ} \mathrm{C}$), transfer into a 100 mL volumetric flask completely and cool it to $20^{\circ} \mathrm{C}$. Then add 1 mL trichloroacetic acid (A.3.1), dilute to volume with water, blend and settle for 30 min . Filter with filter paper (A.4.5), dispose 10 mL primary filtrate, suck 25 mL filtrate into a beaker, use NaOH solution (A.3.3) to adjust pH value of the filtrate to 4 and then use NaOH solution (A.3.4) to adjust pH value of the filtrate to 8 . Transfer the solution from the beaker into 100 mL volumetric flask, dilute to volume with water and simultaneously conduct blank test.

A.6.2 Determination

A.6.2.1 Drawing standard curve

Recover the temperature of the reagent to room temperature. Accurately suck two groups of standard citric acid solution(A.3.12) of $0,0.50,1.00,1.50,2.00 \mathrm{~mL}$, respectively put them into 10 mL
colorimetric tube (A.4.4), respectively add 1.00 mL buffer solution (A.3.6), 0.10 mL NADH solution (A.3.8), 0.02 mL MDH and LDH suspension liquid (A3.10), shake well, settle for 5 min in water bath pot (A.4.7) at $20 \sim 25^{\circ} \mathrm{C}$, dilute to volume of 3.00 mL . For one group, use air as the reference and adopt 1 cm colorimetric dish (A.4.6) to determine the absorbance A_{0} of the solution in each colorimetric tube at the wavelength of 340 nm . For another group, respectively add 0.02 mL CL (A.3.11), blend, settle for 5 min in water bath pot (A.4.7) at $20 \sim 25^{\circ} \mathrm{C}$, use air as the reference and adopt 1 cm colorimetric dish (A.4.6) to determine absorbance A_{0} of the solution in each colorimetric tube at the wavelength of 340 nm . Calculate the absorbance A in accordance with formula (A.1) and draw standard curve by using the citric acid content as ordinate and the absorbance as abscissa.

$$
\begin{equation*}
A=A_{0}-A_{10} \tag{A.1}
\end{equation*}
$$

Where:
A_{0}-Absorbance before adding CL.
$\mathrm{A}_{10}-A b s o r b a n c e ~ a f t e r ~ a d d i n g ~ C L ~ a n d ~ p u t t i n g ~ i n t o ~ w a t e r ~ b a t h ~ f o r ~ 10 m i n . ~$

A.6.2.2 Determination of test solution absorbance

Use pipette to suck two proportions of 2.00 mL test solution (A.6.1) and put into 10 mL colorimetric tube. The following procedures are as same as "Respectively add 1.00 mL buffer solution (A.3.6).... Calculate the absorbance A in accordance with formula (1)" in A.6.2.1, find the corresponding citric acid content on standard curve and simultaneously conduct blank test.

A. 7 Result calculation

Citric acid content in the sample is expressed by $\mathrm{g} / 100 \mathrm{~g}$ and calculated in accordance with formula (2):

$$
\begin{equation*}
X=\frac{c \times V_{1} \times V_{3}}{10000 m \times V_{2} \times V_{4}} \tag{A.2}
\end{equation*}
$$

Where:
c-Citric acid content in test solution found on standard curve. The unit is $\mu \mathrm{g}$;
V_{1}-Constant volume of the sample after deproteinization, 100 mL ;
V_{3}-Constant volume of filtrate, 100 mL ;
m -Sample mass. The unit is g ;
V_{2}-Volume of the sucked filtrate, 25.00 mL ;
V_{4}-Volume of the sucked test solution, 2.00 mL ;
Deduct blank from the calculation result, three significant digits should be reserved.

A. 8 Precision

The difference between the absolute values of the two independent determination results obtained under the repeatability condition must not exceed 10% of the average arithmetic value.

Appendix B

(Normative Appendix)

Determination of Added Lactose Content in Cheese and Processed Cheese Products - Enzyme Method

B. 1 Scope

This appendix is applicable for the determination of lactose content in cheese and processed cheese products with enzyme method.

B. 2 principle

Under catalysis of β-GLS, lactose decomposes into D-glucose (G) and GL. HK phosphorylates D-glucose into G6P and simultaneously converts ATP into ADP. Under catalysis of G6PDH, G6P is oxidized into GA6P and NADP+ is simultaneously reduced into NADPH. Absorbance value of NADPH is proportional to the lactose content. The constant quantity should be compared with standard series.

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{12}(\mathrm{~L})+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\beta \mathrm{GLS}} \mathrm{D}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{G})+\mathrm{D}^{-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{GL})} \\
& \mathrm{D}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{G})+\mathrm{ATP} \xrightarrow{\mathrm{HK}} \mathrm{G} 6 \mathrm{P}+\mathrm{ADP} \\
& \mathrm{G} 6 \mathrm{P}+\mathrm{NADP}^{+}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { G6PDH }} \mathrm{GA} 6 \mathrm{P}+\mathrm{NADPH}+\mathrm{H}^{+}
\end{aligned}
$$

B. 3 Reagent and material

Unless otherwise noted, all the reagents are analytically pure. The test water should comply with the provisions in GB/T 6682.
B.3.1 Standard lactose ($\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \cdot \mathrm{H}_{2} \mathrm{O}$): Purity $\geqslant 99 \%$.
B.3.2 $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{5}\right.$ solution $(36 \mathrm{~g} / \mathrm{L})$: Weigh $3.6 \mathrm{~g} \mathrm{~K} 4\left[\mathrm{Fe}(\mathrm{CN})_{5} .3 \mathrm{H}_{2} \mathrm{O}\right]$, dissolve in water, dilute to volume of 100 mL and blend.
B.3.3 ZnSO_{4} solution (7.2g/L): Weigh $7.2 \mathrm{~g} \mathrm{ZnSO} .7 \mathrm{H}_{2} \mathrm{O}$, dissolve in water, dilute to volume of 100 mL and blend.
B.3.4 $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution (2mol/L): Dilute the concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ with water. The ratio between the concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and water is $1: 8$ (volume ratio).

Warning: When diluting the concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, it should be added into water slowly and agitate continuously. Otherwise, explosion will be induced.
B.3.5 NaOH solution ($200 \mathrm{~g} / \mathrm{L}$): Weigh 20.0 g NaOH , dissolve in water, dilute to volume of 100 mL and blend.
B.3.6 NaOH solution ($4 \mathrm{~g} / \mathrm{L}$): Weigh 4.0 g NaOH , dissolve in water, dilute to volume of 1000 mL and blend.
B.3.7 $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution (422 g/L): Weigh $42.2 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, dissolve in water, dilute to volume of 100 mL and blend.
B.3.8 Citrate buffer solution (pH 6.6): Weigh $2.8 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3} .2 \mathrm{H}_{2} \mathrm{O}, 0.042 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} . \mathrm{H}_{2} \mathrm{O}$ and 0.635 g $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$, dissolve in 40 mL water, adjust pH to 6.6 ± 0.1 with $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution (B.3.4) or NaOH solution (B.3.6), dilute to volume of 50 mL with water and blend. The solution can be stored in refrigerator $\left(0 \sim 4^{\circ} \mathrm{C}\right)$ for 3 months. It should be settled to reach room temperature before application.
B.3.9 TEA buffer solution (pH 7.6): Respectively weigh $14.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{3} . \mathrm{HCl}$ and $0.25 \mathrm{~g} \mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$, dissolve in 80 mL water, adjust pH to 7.6 ± 0.1 with NaOH solution (B.3.5), dilute to volume of 100 mL . After blended, the solution can be stored in refrigerator ($0 \sim 4^{\circ} \mathrm{C}$) for 2 months.
B.3.10 NADP ${ }^{+}$-ATP-TEA buffer suspension solution: Respectively weigh $65 \mathrm{mg} \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{7} \mathrm{O}_{17} \mathrm{P}_{3} \mathrm{Na}_{2}$ and $170 \mathrm{mg} \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{13} \mathrm{P}_{3} \mathrm{Na}_{2}$, dissolve in 30 mL TEA buffer solution (B.3.9). After blended, the solution can be stored in the refrigerator $\left(0 \sim 4^{\circ} \mathrm{C}\right)$ for 3 months. It should be settled to reach room temperature before application.
B.3.11 β-GLS- $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ suspension liquid (pH value is about 7.6): Dissolve β-GLS (escherichia coli, EC 3.2.1.23) in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution (A.3.9) to make the activity of β-GLS $\geqslant 600 \mathrm{IU} / \mathrm{mL}$. After having been slowly stirred into suspension liquid, this solution can be stored in refrigerator ($0 \sim 4^{\circ} \mathrm{C}$) for 12 months. During the application, the vessel of the suspension liquid should be immersed in ice water.
B.3.12 HK-G6PDH- $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ suspension liquid: Dissolve hexokinase (HK, yeast, EC 2.7.1.1) and G6PDH (G6PDH, yeast, EC 1.1.1.49) in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution (A.3.9) to make the activity of $\mathrm{HK} \geqslant 280$ $\mathrm{IU} / \mathrm{mL}$ and that of G6PDH $\geqslant 140 \mathrm{IU} / \mathrm{mL}\left(25^{\circ} \mathrm{C}\right)$. After having been slowly stirred into suspension liquid, this solution can be stored in refrigerator $\left(0 \sim 4^{\circ} \mathrm{C}\right)$ for 12 months. During the application, the vessel of the suspension liquid should be immersed in ice water.
B.3.13 Standard lactose solution $\left[\mathrm{c}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} . \mathrm{H}_{2} \mathrm{O}\right)=80 \mu \mathrm{~g} / \mathrm{mL}\right]$: Accurately weigh 0.842 g standard lactose (B.3.1), which has been baked to constant weight after baking for 2 h at $87^{\circ} \mathrm{C}$, dissolve it in water, dilute to volume of 100 mL with water and shake well. Accurately suck the above solution of 1.00 mL , dilute to volume of 100 mL with water and obtain the standard lactose working solution of $80 \mu \mathrm{~g} / \mathrm{mL}$, which is stored in refrigerator ($0 \sim 4^{\circ} \mathrm{C}$) and prepared for immediate use.

B. 4 Instrument

Common used laboratory instruments and other items are as follows.
B.4.1 Analytical balance: sensitive quantity $=0.1 \mathrm{mg}$
B.4.2 Quantitative filter paper: Medium speed. Diameter $=15 \mathrm{~cm}$.
B.4.3 Graduated colorimetric tube: 10 mL , with lid.
B.4.4 Spectrophotometer, $340 \mathrm{~nm}, 1 \mathrm{~cm}$ colorimetric dish
B.4.5 Water bath pot: Maintain the temperature at $20 \sim 36^{\circ} \mathrm{C}$.

B. 5 Sample preparation

B.5.1. Sample preparation

Take at least 200 g representative sample, blend completely and put it into a closed glass vessel.

B.5.2 Test solution preparation

Accurately weigh 1 g sample into a beaker, dissolve it in warm water ($40 \sim 50^{\circ} \mathrm{C}$), stir it with glass rod, completely transfer the sample from the beaker into a 100 mL volumetric flask, dilute to volume
with water and blend. Then add $5 \mathrm{~mL} \mathrm{~K}_{4}\left[\mathrm{~F}_{3}(\mathrm{CN})_{5}\right.$ solution (B.3.2), $5 \mathrm{~mL} \mathrm{ZnSO}_{4}$ solution (B.3.3) and 10 mL NaOH solution (B.3.6), fully mix the solution after each time of addition, dilute to volume of 100 mL with water, blend and settle for 30 min . Dispose part of the primary filtrate, suck 5.00 mL filtrate into a 100 mL volumetric flask, dilute to volume of 100 mL with water and obtain the test solution.

B.5.3 Drawing standard curve

Suck $0,0.20,0.40,0.60,0.80$ and 1.00 mL standard lactose working solution (B.3.13), respectively put into colorimetric tube (B.4.3), respectively add 0.20 mL citrate buffer solution (B.3.8), $0.05 \mathrm{~mL} \beta$ -GLS- $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ suspension liquid (B.3.11), shake well and maintain the temperature in water bath pot for 15 min . Take out the colorimetric tube, add 1.00 mL NADP ${ }^{+}$-ATP-TEA buffer solution (B.3.10), 0.05 mL HK-G6PDH- $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ suspension liquid (B.3.12) , shake well and maintain the temperature in water bath pot (B.4.5) for 60min, take out, cool to room temperature, dilute to volume of 5.00 mL with water, shake well and settle for 5 min . In 1 cm colorimetric dish (B.4.4), use reagent solution not containing standard lactose solution as the reference to determine the absorbance of the solution in each colorimetric tube at the wavelength of 340 nm . Draw standard curve by using the lactose content as ordinate and the absorbance as abscissa.
B.5.4 Determination of test solution absorbance

Accurately suck 1.00 mL test solution (B.6.1) into colorimetric tube (B.4.3), add 0.20 mL citrate buffer solution (B.3.8), 1.00 mL NADP+-ATP-TEA buffer suspension solution (B.3.10), 0.05 mL HK-G6PDH- $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ suspension liquid (B.3.12), shake well and maintain the temperature in water bath pot (B.4.5) for 60 min . Then take it out, cool to room temperature, dilute to volume of 5.00 mL with water, shake well, settle for 5 min and use the solution as the reference of test solution.

Accurately suck 1.00 mL test solution (B.6.1) into colorimetric tube (B.4.3). The following procedures are operated as "respectively add 0.20 mL citrate buffer solution (B.3.8).... and settle for 5 min " in B.6.2, determine the absorbance of the solution in each colorimetric tube at the wavelength of 340 nm and find the corresponding lactose content on standard curve.

B. 6 Result calculation

Lactose content in the sample is expressed by $\mathrm{g} / 100 \mathrm{~g}$ and calculated in accordance with formula (B.1):

$$
X=\frac{c \times V_{1} \times V_{3}}{10000 m \times V_{2} \times V_{4}}
$$

Where:
c-Lactose content in test solution found on standard curve. The unit is $\mu \mathrm{g}$;
V_{1}-Constant volume of the sample after deproteinization, 250 mL ;
V_{3}-Constant volume of filtrate, 100 mL ;
m -Sample mass. The unit is g ;
V_{2} —Volume of the sucked filtrate, 5.00 mL ;
V_{4}-Volume of the sucked test solution, 1.00 mL ;

The above values should be expressed in the arithmetic mean of parallel determination. Three significant digits should be reserved.

B. 7 Precision

The difference between the absolute values of the two independent determination results obtained under the repeatability condition must not exceed 10% of the average arithmetic value.

